A heterogeneous stochastic FEM framework for elliptic PDEs
نویسندگان
چکیده
We introduce a new concept of sparsity for the stochastic elliptic operator −div (a(x,ω)∇(·)), which reflects the compactness of its inverse operator in the stochastic direction and allows for spatially heterogeneous stochastic structure. This new concept of sparsity motivates a heterogeneous stochastic finite element method (HSFEM) framework for linear elliptic equations, which discretizes the equations using the heterogeneous coupling of spatial basis with local stochastic basis to exploit the local stochastic structure of the solution space. We also provide a sampling method to construct the local stochastic basis for this framework using the randomized range finding techniques. The resulting HSFEM involves two stages and suits the multi-query setting: in the offline stage, the local stochastic structure of the solution space is identified; in the online stage, the equation can be efficiently solved for multiple forcing functions. An online error estimation and correction procedure through Monte Carlo sampling is given. Numerical results for several problems with high dimensional stochastic input are presented to demonstrate the efficiency of the HSFEM in the online stage.
منابع مشابه
The Method of Auxiliary Mapping for the Finite Element Solutions of Elliptic Partial Diierential Equations on Nonsmooth Domains in R 3
The method of auxiliary mapping (MAM) introduced by Babu ska-Oh((10]) was eecient and successful in dealing with plane elliptic boundary value problems containing singularities. In this paper, MAM is generalized for elliptic PDEs on non-smooth domains in R 3 : This method is tested in the framework of the p-version of the nite element method (FEM) for the axisymmetric Poisson equations containi...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملExploring the Locally Low Dimensional Structure in Solving Random Elliptic PDEs
We propose a stochastic multiscale finite element method (StoMsFEM) to solve random elliptic partial differential equations with a high stochastic dimension. The key idea is to simultaneously upscale the stochastic solutions in the physical space for all random samples and explore the low stochastic dimensions of the stochastic solution within each local patch. We propose two effective methods ...
متن کاملStochastic Collocation for Elliptic PDEs with random data - the lognormal case
We investigate the stochastic collocation method for parametric, elliptic partial differential equations (PDEs) with lognormally distributed random parameters in mixed formulation. Such problems arise, e.g., in uncertainty quantification studies for flow in porous media with random conductivity. We show the analytic dependence of the solution of the PDE w.r.t. the parameters and use this to sho...
متن کاملA stochastic variational multiscale method for diffusion in heterogeneous random media
A stochastic variational multiscale method with explicit subgrid modeling is provided for solution of stochastic elliptic equations that arise while modeling diffusion in heterogeneous random media [1]. The exact solution of the governing equations is split into two components: a coarse-scale solution and a subgrid solution. A localized computational model for the subgrid solution is derived. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 281 شماره
صفحات -
تاریخ انتشار 2015